

5-5 Energy Changes - Trilogy

1.0 The **Figure 1** shows magnesium burning in air.

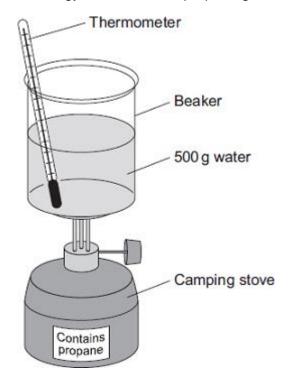
Figure 1

© Charles D Winters/Science Photo Library

1.1 Give one observation that you can make from Figure 1 that shows that a chemical reaction is taking place.

[1 mark]

1.2 The Bunsen burner flame provides energy to start the magnesium burning. Draw a ring around the name given to the energy needed to start a chemical reaction.


[1 mark]

Activation energy Potential Energy Solar Energy

2.0 A camping stove uses propane gas.

A student investigated the energy released when propane gas is burnt.

The student:

- put 500 g water into a beaker
- recorded the starting temperature of the water
- heated the water by burning propane for 1 minute
- recorded the temperature of the water after burning the propane.

Table 1 shows the student's results for the investigation.

Table 1

Starting temperature of water in °C	Temperature of water after burning propane in °C	Temperature change of water in °C
19	34	

2.1	Calculate	tne	temperature	cnange of	r tne water.
-----	-----------	-----	-------------	-----------	--------------

[1 mark]

Temperature change = _____°C

2.2 Calculate the energy released in joules when propane is burned for 1 minute.

Use the equation:

energy released (J) = mass of water (g) \times 4.2 \times temperature change (°C)

[2 marks]

Energy released = ______

0	A student investigated the energy released when different metals react with copper sulfate solution.	
	What is the independent variable in this investigation?	[1 mark
	What is the dependent variable in this investigation?	[1 mark
	State two control variables the student should keep the same.	[2 marks
	Figure 1 shows the equipment the student used for the investigation. Figure 1	
	Thermometer Glass beaker 50 cm³ copper sulfate solution	
	Explain how the student could have improved the equipment used for this investigation.	[4 marks

4.0 Ammonia is used in the manufacture of fertilisers. The equation for the formation of ammonia (NH₃) from nitrogen (N₂) and hydrogen (H₂) is:

$$N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$$

This question refers to the **forward** reaction which is exothermic.

Bond energies for the reaction are given in **Table 1**.

Table 1

Bond	Bond energy in kJ per mole
N = N	945
H – H	436
N – H	390

The structures are shown in Figure 2.

Figure 2

$$N \equiv N$$
 $H - H$ $H - N - H$ I H

4.1 Calculate the overall energy change for the **forward** reaction.

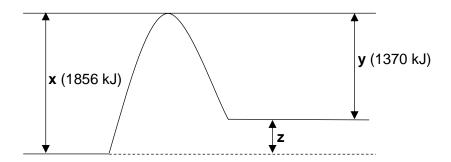
[3 marks]

4.2 Draw an energy level diagram for the **forward** reaction

Mark on the energy level diagram:

- Nitrogen (N₂)
- Hydrogen (H₂)
- Ammonia (NH₃)

[3 marks]



5.0 Water decomposes to form hydrogen and oxygen.

The equation for the reaction is:

$$2H_2O \quad \rightarrow \quad 2H_2 \quad + \quad O_2$$

The reaction profile for this reaction is shown below.

5.1 Explain the significance of **x**, **y** and **z** in the reaction profile in terms of energy transfers that occur in the reaction.

In your answer make reference to:

- the substances involved
- the bonds broken and formed
- the overall energy transfer.

		[6 ma

MARK SCHEME

Qu No.		Extra Information	Marks
1.1	Any one from: there was a flame (white) smoke was formed the magnesium turned into a (white) powder		1
1.2	Activation energy		1

Qu No.		Extra Information	Marks
2.1	15 °C		1
2.2	31500 (J)	Allow ecf from 2.1	2
		Allow 1 mark for	
		$500 \times 4.2 \times 15$	
		or	
		$500 \times 4.2 \times (ans 2.1)$	

Qu No.		Extra Information	Marks
3.1	Type of metal	Allow metal	1
3.2	Temperature change		1
3.3	Any two from: volume of copper sulfate solution concentration of copper sulfate solution mass of metal used starting temperature		2
3.4	Used a lid	Allow insulate outside of beaker	1
	To reduce heat loss or to improve insulation		1
	Used a thermometer with a higher resolution.	Allow measure to the nearest 0.5 °C or 0.1 °C	1
	To measure the temperature change more accurately		1

Qu No.		Extra Information	Marks
4.1	(Energy taken in) =945 + (3 × 436) = 2253 (kJ) (Energy given out)= 6 × 390 = 2340 (kJ) (Energy change) 2253 - 2340 = (-) 87 (kJ)		1
		Allow ecf from step 1/2	
		Correct answer with/without working gains 3 marks.	1
4.2	Reactant energy higher than the product energy		1
	Curve for the reaction correctly drawn		1
	Nitrogen and hydrogen shown as reactants and ammonia as a product		1

Qu No.	E	xtra Information	Marks		
5.1					
Level 3:	A detailed and coherent explanation is given, which demonstrates a broad understanding of the key scientific ideas. The response makes logical links between the points raised and uses sufficient examples to support these links.		5-6		
Level 2:	An explanation is given which demonstrates a rescientific ideas. Links are made but may not be		3-4		
Level 1:	Simple statements are made which demonstrate relevant ideas. The response may fail to make I	•	1-2		
	No relevant content		0		
Indicativ	e content				
Substan	ces				
 react 	ant is water				
• prod	products are oxygen and hydrogen				
Significa	nce of x, y and z				
• x is e	x is energy required to break the bonds in reactant / water				
 x is a 	ctivation energy				
y is t	ne energy released/given out when bonds form				
-	ne energy released/given out when hydrogen and	d oxygen form			
	ifference between x and y				
• z is t	ne overall energy transfer				
Overall 6	nergy transfer				
• z = 1	856 – 1370 = (+)486 kJ				
• overa	all, energy is absorbed in the reaction				
energing form	gy required to break existing bonds is greater tha	an the energy released when new bonds			
• so re	action is endothermic				